11 research outputs found

    Effects of Baicalin on Diabetic Cardiac Autonomic Neuropathy Mediated by the P2Y12 Receptor in Rat Stellate Ganglia

    No full text
    Background/Aims: Chronic diabetic hyperglycemia can damage various of organ systems and cause serious complications. Although diabetic cardiac autonomic neuropathy (DCAN) is the primary cause of death in diabetic patients, its pathogenesis remains to be fully elucidated. Baicalin is a flavonoid extracted from Scutellaria baicalensis root and has antibacterial, diuretic, anti-inflammatory, anti- metamorphotic, and antispasmodic effects. Our study explored the effects of baicalin on enhancing sympathoexcitatory response induced by DCAN via the P2Y12 receptor. Methods: A type 2 diabetes mellitus rat model was induced by a combination of diet and streptozotocin. Serum epinephrine was measured by enzyme-linked immunosorbent assay. Blood pressure and heart rate were measured using the indirect tail-cuff method. Heart rate variability was analyzed using the frequency-domain of electrocardiogram recordings. The expression levels of P2Y12, interleukin-1beta (IL-1β), tumor necrosis factor alpha (TNF-α), and connexin 43 (Cx43) were determined by quantitative real-time reverse transcription-polymerase chain reaction and western blotting. The interaction between baicalin and P2Y12 determined using by molecular docking. Results: Baicalin alleviated elevated blood pressure and heart rate, improved heart rate variability, and decreased the elevated expression levels of P2Y12, IL-1β, TNF-α, and Cx43 in the stellate ganglia of diabetic rats. Baicalin also reduced the elevated concentration of serum epinephrine and the phosphorylation of p38 mitogen-activated protein kinase in diabetic rats. Conclusion: Baicalin decreases sympathetic activity by inhibiting the P2Y12 receptor in stellate ganglia satellite glial cells to maintain the balance between sympathetic and parasympathetic nerves and relieves DCAN in the rat

    Naringin Protects Against High Glucose-Induced Human Endothelial Cell Injury Via Antioxidation and CX3CL1 Downregulation

    No full text
    Background/Aims: The induction of endothelial injury by hyperglycemia in diabetes has been widely accepted. Naringin is a bio-flavonoid. Some studies showed that naringin alleviates diabetic complications, but the exact mechanisms by which naringin improves diabetic anomalies are not yet fully understood. The aim of this research was to study the protective effect of naringin on high glucose-induced injury of human umbilical vein endothelial cells (HUVECs). Methods: HUVECs were cultured with or without high glucose in the absence or presence of naringin for 5 days. The expression of CX3CL1 was determined by quantitative real-time RT-PCR (qPCR) and western blot. The cellular bioenergetic analysis oxygen consumption rate (OCR) was measured with a Seahorse Bioscience XF analyzer. Results: The production of reactive oxygen species (ROS), the expression of CX3CL1 and the level of AKT phosphorylation were increased in HUVECs cultured with high glucose compared with controls. However, naringin rescued these increases in ROS production, CX3CL1 expression and AKT phosphorylation. Nitric oxide (NO) production and OCR were lower in the high glucose group, and naringin restored the changes induced by high glucose. Molecular docking results suggested that Naringin might interact with the CX3CL1 protein. Conclusion: Naringin protects HUVECs from high-glucose-induced damage through its antioxidant properties by downregulating CX3CL1 and by improving mitochondrial function

    Puerarin alleviates burn-related procedural pain mediated by P2X3 receptors

    No full text
    Pain is a major problem after burns. Procedural pain evoked by burn dressing changes is common in patients, and its management is a critical part of treatment in acute burn injuries. Burn pain is very likely the most difficult form of acute pain to treat. ATP contributes to inflammation, and ATP is implicated in peripheral pain signaling via actions upon P2X3 receptors. Puerarin is extracted from a traditional Chinese medicine and may act on P2X3 receptor mechanisms. The Visual Analogue Scale (VAS) has been shown to be a sensitive indicator of pain intensity and treatment effects. Peripheral blood mononuclear cells (PBMCs) are involved in nociception or pain after burn injury. Burn patients were randomly divided into normal saline (NS) group (salt solution is saline) and puerarin-treated group and pain (Visual Analogue Scale scores) and inflammation (PBMCs) measured. Burn pain produces a stress response, so blood glucose, insulin, and cortisol levels in burn patients were determined. Furthermore, the expression of P2X3 protein and mRNA in PBMCs was detected. The VAS scores in the puerarin-treated group were lower than those in NS group. The blood glucose, insulin, and cortisol levels in the puerarin-treated group at post-dressing changes were significantly decreased in comparison with those in NS group. The expression levels of P2X3 protein and mRNA in PBMCs of burn patients in NS group were significantly increased in comparison with those in the puerarin-treated group. Puerarin can antagonize inflammatory factors (such as ATP) and decrease the upregulated expressions of P2X3 protein and mRNA in PBMCs after burns to decrease VAS. Thus, puerarin had an analgesic effect on procedural pain in dressing changes of burn patients related to P2X3 receptors
    corecore